首页文章正文

卷积神经网络原理,卷积神经网络的原理及应用

卷积神经网络能干什么 2022-12-26 07:19 410 墨鱼
卷积神经网络能干什么

卷积神经网络原理,卷积神经网络的原理及应用

╯^╰〉 卷积步骤完成后,再使用MaxPooling算法来缩减像素采样数组,按照2×2来分割特征矩阵,分出的每一个网格中只保留最大值数组,丢弃其它数组,得到最大池化数组(Max-PooledArray)。接下来对图像(不同的数据窗口数据)和滤波矩阵(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的『卷积』

3.定义一个卷积神经网络我们需要三个基本的元素来定义一个基本的卷积网络1. 卷积层2. 池化层(可一、CNN原理卷积神经网络(CNN)主要是用于图像识别领域,它指的是一类网络,而不是某一种,其包含很多不同种结构的网络。不同的网络结构通常表现会不一样。从CNN的一些典型结构中,可以

其核心主要是“卷积与池化”接下来我将介绍卷积神经网络进行特征提取的原理1、基本概念对比普通的神经网络,卷积神经网络包含了由卷积层和池化层构成的特征提取器。在卷卷积神经网络主要由三种类型的层构成:卷积层,池化(Pooling)层和全连接层(全连接层和常规神经网络中的一样)。通过将这些层叠加起来,就可以构建一个完整的卷积神经网络。卷积层卷积

+0+ 理解CNN卷积神经网络原理1 前言2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有一个词似乎比“卷积神经网络-CNN 的基本原理典型的CNN 由3个部分构成:卷积层池化层全连接层如果简单来描述的话:卷积层负责提取图像中的局部特征;池化层用来大幅降低参数量级(降维);全连接层类似传统神经

后台-插件-广告管理-内容页尾部广告(手机)

标签: 卷积神经网络的原理及应用

发表评论

评论列表

灯蓝加速器 Copyright @ 2011-2022 All Rights Reserved. 版权所有 备案号:京ICP1234567-2号